CS166 Handout 07
Spring 2023 April 18,2023

Problem Set 2: Balanced Trees

This problem set explores balanced trees, augmented search trees, data structure isometries, and
how those techniques can be used to find clever solutions to complex problems. By the time you've
finished this problem set, you’ll have a much deeper understanding for how these concepts relate to
one another. Plus, you’ll have designed and implemented several truly beautiful data structures!

Due Thursday, April 25" at noon Pacific

2/5

Problem One: Order Statistics Trees

In this problem, you’ll take an implementation of a red/black tree that only supports insertions and
lookups, then convert into an order statistics tree by adding support for the rankOf and select opera-
tions. The select operation is the one we talked about in lecture: it takes in a number k, then returns the
kth order statistic. The rankOf operation is a sort of inverse of select: it takes in a key, then returns the
number of elements in the red/black tree smaller than the key. (The key in question doesn’t actually have
to be in the tree.)

Copy the starter files for PS2 from myth from

Jusr/class/cs166/assignments/a2

to a local directory of your own choosing, then edit RedBlackTree.h and .cpp with your solution.

Some notes on this problem:

Feel free to edit whatever parts of the provided starter code that you see fit, provided that (1) you
still back the data structure with a red/black tree and (2) all operations run in time O(log n), ex-
cept for the destructor (time O(n)) and printDebugInfo (can be whatever you'd like). We don’t
think you will need to do much surgery on the provided RedBlackTree type, so if you find your-
self fundamentally rewriting large parts of the code, chances are you’re missing an easier solution.

You can run all tests by executing
./run-tests
and following the prompts.

The select function should throw a std::out_of_range exception if the index to select is in-
valid (for example, trying to select the fifth item in a tree with four elements). However, the
rankOf function should work just fine regardless of whether the key is in the tree.

To receive full credit, your code should compile with no warnings (-Wall -Wpedantic -Werror) and
should not have any memory errors (use valgrind to check this). We'll test your code on the myth clus-
ter. Submit by running the normal CS166 submit script.

3/5

Problem Two: Deterministic Skiplists

Although we've spent a lot of time talking about balanced trees, they are not the only data structure we
can use to implement a sorted dictionary. Another popular option is the skiplist, a data structure consist-
ing of a collection of nodes with several different linked lists threaded through them.

Before attempting this problem, you'll need to familiarize yourself with how a skiplist operates. We rec-
ommend a combination of reading over the Wikipedia entry on skiplists and the original paper Skip Lists:
A Probabilistic Alternative to Balanced Trees by William Pugh (available on the course website). You
don't need to dive too deep into the runtime analysis of skiplists, but you do need to understand how to
search a skiplist and the normal (randomized) algorithm for performing insertions.

The original version of the skiplist introduced in Pugh's paper, as suggested by the title, is a randomized
data structure and gives expected O(log n) performance on each of the underlying operations. In this prob-
lem, you'll use an isometry between multiway trees and skiplists to develop a deterministic skiplist that
supports all major operations in worst-case time O(log n).

i. Briefly explain how to encode a multiway tree as a skiplist. Include illustrations as appropriate.

To design a deterministic skiplist supporting insertions, deletions, and lookups in time O(log n) each, we
will enforce that the skiplist always is an isometry of a 2-3-4 tree.

ii. Using the structural rules for 2-3-4 trees and the isometry between multiway trees and skiplists
you noted in part (i) of this problem, come up with a set of structural requirements that must hold
for any skip list that happens to be the isometry of a 2-3-4 tree. To do so, go through each of the
structural requirements required of a 2-3-4 tree and determine what effect they will have on the
shape of a skiplist that's an isometry of a 2-3-4 tree.

Going forward, we'll call a skiplist that obeys the rules you came up with in part (ii) a 2-3-4 skiplist.

iii. Give two explanations as to why a lookup on a 2-3-4 skiplist takes worst-case O(log n) time. First,
write a formal proof based on the rules you came up with in part (ii) and without referencing 2-3-
4 trees. Second, give a much simpler, intuitive argument that uses the isometry from 2-3-4 trees to
2-3-4 skiplists.

iv. Show the effect of inserting the value 8 into the 2-3-4 skiplist shown below.

> > y —»
> b B P P P P P P P P
1 3 5 7 9 11 13 15 17 19

nil

Congrats! You've just used an isometry to design your own data structure! If you had fun with this, you're
welcome to continue to use this isometry to figure out how to delete from a 2-3-4 skiplist.

Fun fact: Here, we started with a deterministic balanced tree (2-3-4 trees) and derived a deterministic
skiplist. You can also run this process in reverse by starting with a randomized skiplist and deriving a ran-
domized balanced binary search tree (the zip tree). Check out this link for more details.

https://stackoverflow.com/questions/61944198/what-is-a-zip-tree-and-how-does-it-work

4/5

Problem Three: Dynamic Prefix Parity

Consider the following problem, called the dynamic prefix parity problem (DPP). Your task is to design a
data structure that logically represents an array of » bits and supports these operations:

i.

initialize(n), which creates a new data structure for an array of n bits, all initially O;
ds.f1ip(i), which flips the ith bit; and

ds.prefix-parity(i), which returns the parity of the subarray consisting of the first i bits of the
array. (The parity of a subarray is zero if the subarray contains an even number of 1 bits and is
one if it contains an odd number of 1 bits. Equivalently, the parity of a subarray is the logical
XOR of all the bits in that array).

It's possible to solve this problem with initialize taking O(n) time such that flip runs in time O(1)
and prefix-parity runs in time O(n) or vice-versa. (Do you see how?) However, by using balanced
trees, it’s possible to do significantly better than this. In this problem, you’ll work through a series of
smaller milestones that culminates in a theoretically optimal result.

Let’s begin with an initial version of the data structure. Describe how to use augmented binary
trees to solve dynamic prefix parity such that initialize runs in time O(n) and both flip and
prefix-parity run in time O(log n). Argue correctness and justify your runtime bounds.

Some things to think through as you do this:

You have the luxury of working with a tree where insertions and deletions will never happen;
the number of items is specified in initialize(n) and never changes after that. Therefore,
provided you can give initial values to any extra information you’re caching at each node, and
provided that you can update that information in O(log n) total time after a flip operation,
you can meet the required time bounds.

If you squint at this problem in just the right way, this will look a lot an order statistic tree.
See you can adapt some of the augmentation techniques from there.

A powerful technique we haven’t yet encountered, but which might be useful to you here: con-
sider making your tree such that only the leaf nodes store actual data, with all the internal
nodes just serving as a way to join smaller subtrees together and cache relevant data.

When designing an augmented tree, it often helps to first solve the problem on a static array
using a divide-and-conquer algorithm. So consider doing the following: suppose you had an ar-
ray of n bits. Could you design a divide-and-conquer algorithm for computing prefix parities
that has the recurrence relation T(n) = 2T(n / 2) + O(1)? If so, you can often translate your
idea into an augmented tree by caching, at each node in the tree, the value that would be re-
turned by running that divide-and-conquer algorithm on the elements in that tree.

(Continued on the next page...)

575

ii. Explain how to revise your solution from part (i) of this problem so that instead of using aug-
mented binary trees, you use augmented multiway trees. Your solution should have initialize
take time O(n), flip take time O(log, n), and prefix-parity take time O(b log, n). Here, b is a
tunable parameter. Argue correctness and justify your runtime bounds.

Some things to think about as you do this:

* In an order statistic tree, we store one piece of information per node, since of a node’s two
children we only needed to care about the left child. Now that you have a multiway tree where
each node can have multiple children, you may want to store multiple pieces of extra informa-
tion per node.

* In a later lecture, we’ll cover a simple algorithm that builds a B-tree from a set of n sorted
keys in time O(n), annotating each node with a pointer to its parent and the index of which
child of the parent it is (e.g. first child, third child, etc.). It can easily be modified to build a B-
tree with a particular set of n leaves in time O(n). You can assume you have access to this al-
gorithm as a black box.

iii. Using the Method of Four Russians, modify your data structure from part (ii) so that initialize
still runs in time O(n), but both flip and prefix-parity run in time O(log n / log log n).

This last step is probably the trickiest part. Here are some hints:

In Fischer-Heun, the Method of Four Russians took the form of “share solutions to sub-
problems when you can.” Here, think of the Method of Four Russians as a “divide, pre-
compute, and conquer” approach. That is, break the problem down into multiple smaller
copies of itself, precompute all possible answers to the smaller versions of those problems,
then solve the overall problem by looking up precomputed answers where appropriate.
This will be less about explicitly sharing answers to subproblems and more about having
the answers to all possible small problems written down somewhere. Do you see how your
solution to part (ii) implicitly breaks the bigger problem down into lots of smaller copies?

Remember that log, y = log y / log x thanks to the change-of-basis formula.

All basic integer arithmetic operations are assumed to take time O(1). Floating-point oper-
ations are not considered basic arithmetic operations, nor are operations like “count the
number of 1 bits in a machine word” or “find the leftmost 1 bit in a machine word.”

An array of bits can be thought of as an integer, and integers can be used as indices in ar -
ray-based lookup structures.

Be precise with your choice of b. Constant factors matter! Among other concerns, remem-
ber that each node in a B-tree of order b has between b — 1 and 2b — 1 keys.

As usual, argue correctness. Be sure to justify your runtime bounds precisely — as with the Fis-
cher-Heun structure, your analysis will hinge on the fact that there aren’t “too many” subproblems
to compute the answers to all of them.

Pat yourself on the back when you finish this problem. Isn’t that an amazing data structure?

